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The Lanczos method is proposed for the Monte Carlo simulation of the QCD (lattice) 

vacuum including dynamical fermion loops. It appears that an exact fermion update is feasible 

on medium-sized lattices with today’s vector processors. 0 1987 Academic Press, Inc. 

1. INTRODUCTION 

A long-standing problem in lattice gauge theories is the inclusion of the effect of 
dynamic fermion fields into Monte Carlo calculations. The problem is essentially 
numerical, since it requires the calculation of the ratio of two very large deter- 
minants each time a gauge link variable is changed. 

The pseudofermion method [ 1 ] has led to useful results on small lattices [2], 
but in the opinion of the authors it has poor convergence on reasonable-sized lat- 
tices and at realistically small fermion masses. Furthermore, the method is not exact 
and amounts to a (small?) violation of the detailed balance. An alternative 
approach is the microcanonical technique [3]. This has some advantages but can 
only be used when the number of fermion species is a multiple of four. Moreover, it 
does not fulfill the ergodicity requirement, and the coupling constant has to be 
computed via the Monte Carlo simulation itself. A further alternative is the 
Langevin method [4], which is not exact either and may also exhibit systematic 
errors once it has been tested sufficiently. 
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Since we believe that topology and the accompanying fermionic zero modes play 
an important role in the dynamics of the QCD vacuum, we find an exact updating 
procedure indispensible. There is an exact method, which reduces the fermion 
matrix to a smaller, but denser one on spatial planes only [S]. This works well at 
small mass, since there are no convergence problems, but is only feasible on lattices 
with a very small volume, although the time dimension may be large. In this paper 
we shall present a new method based on the Lanczos algorithm for inverting large, 
sparse matrices, which we have found to be feasible on medium-sized lattices with 
present-day computing power. 

We have explained in a previous paper how the Lanczos algorithm can be 
used-in a manner similar to the conjugate gradient algorithm-for inverting 
matrices row by row [6]. If we apply this to fermionic updating, then we have a 
number of advantages. First, the convergence of the Lanczos algorithm is superior 
to that of the conjugate gradient algorithm at realistically small mass. It will even 
converge at zero mass. This could mean a saving in time by a factor of 2 to 3. A 
further advantage is that, if we wish to include a number of different species of fer- 
mions at different masses, the Lanczos algorithm can simultaneously invert for all 
the masses at once with only a minor increase in computation. 

The main advance in updating-which we will describe here-is, however, the 
use of rank annihilation to update a block of an inverse exactly. For example, a 
hypercube contains 16 sites and 32 links, and for SU(3) a 48 x 48 block of the 
inverse is sufficient to update any link in a hypercube. Rank annihilation then 
allows us to update the block to give the inverse for the new configuration without 
any further inversion. This means that all the links in the hypercube can be 
updated, one at a time, as many times as is desired without much more than the 
computation of 48 rows of the inverse. The time for one sweep is then reduced by a 
factor of 4, and, in addition, the number of sweeps for thermalization may be 
reduced, since hypercubes (or larger objects) are brought close to equilibrium at 
each sweep. This method could be applied equally well to the conjugate gradient 
algorithm, but we can use block Lanczos to invert 24 rows (or more) 
simultaneously with little increase in the amount of computation. We will describe 
this method here for the first time. Combining these ideas gives an overall time 
saving of a factor of l-2 orders of magnitude depending on the size of the block, the 
quark mass and the coupling b compared with single link updating. 

2. UPDATING THE FERMION MATRIX 

In all our compation we use Kogut-Susskind fermions. The fermion species 
doubling problem is concealed by taking the fourth root of the determinant. 

The fermonic action is 
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where m is the fermion mass in lattice units and M is the anti-hermitian fermion 
matrix 

(2) 

where $,, is a single component, color triplet Grassmann variable sited at 
n= h, n2, n3, n4) and u,,,,+, is the 3 x 3 SU(3) link matrix joining sites n to n + fi, 
fi being a displacement vector of unit length (in lattice units) in direction p. Hence, 
on a lattice of size L,’ . L,, M is a large, sparse anti-hermitian matrix of size 3L:. L, 
square but with only 24 non-zero elements in each row. 

In order to perform Metropolis updating of the gauge field including the effects of 
dynamical fermions, we need to calculate the ratio of determinants of M+ 2m, 
when a change is made to one link, 

R=det(H+AH) 
det( H) 

= det( 1 + H-‘AH), H=i(M+2m), 

where AH is the change in the fermion matrix, when one link matrix is updated. It 
is non-zero in the 6 x 6 block at the intersection of the 6 rows and 6 columns 
corresponding to the two end points of the link. Consequently, the only elements of 
H-’ which contribute are those in the same 6 x 6 block as AH. If we write (dH) 
and (H-‘) for these blocks, then R is given by the 6 x 6 determinant 

R = det( 1 + (H-‘)(m)). (4) 

The Lanczos or the conjugate gradient algorithm can be used to calculate 6 
columns of H- ‘. This is sufficient to update the same link as many times as desired, 
since the ratio of determinants for two different changes is 

R=det(H+A,H) det(1 +H-‘A,H) 
‘. 

det(H+ A,H)=det(l+ H-‘A,H) (5) 

This idea can be extended to a number of links at once. For example, consider all 
32 links of one hypercube. To calculate the ratio of determinants for any change to 
these links, we need the 48 x 48 block corresponding to the 16 sites of the hyper- 
cube. In order to avoid calculation of 48 x 48 determinants, we can update this 
48 x 48 block by rank annihilation [7] as follows. Consider a change to one link of 
the hypercube. This makes a change AH in the fermion matrix with 18 non-zero 
elements, which we separate into 18 consecutive changes, each to just one element, 

AH=A,H+A2H+...+A,,H, (6) 

so that we can write 

AiH=auvt, (7) 
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where a is the change to the element and U, u are unit column vectors, which are 
zero in all elements but one. Then, if H- ’ = Z, 

(H + mm+) ~ ’ = Z - Zuuu+Z + Zauu+Zuuu+Z- . . . 

= z- a(zu)(o+z)( 1 -uu+zu + u2(u+Zu)2 - ... ) 

= z _ 4zw+z) 
(8) 

1 + uu+zu . 

The convergence of the series is not relevant, since the final result can be checked 
by back substitution. It can easily be seen that this formula can be applied to 
update the 48 x 48 block of Z without knowing the rest of its elements. Numerical 
tests on small- to medium-sized lattices have shown that the link matrices of the 
hypercube can practically be changed as many times as desired and in any order 
without any significant rounding errors accumulating due to updating the block by 
rank annihilation. 

To summarize, the Metropolis algorithm is carried out as follows. To cover all 
the links in one sweep, we need to consider one-eighth of all possible hypercubes 
which touch each other at corners only so that they have no links in common. We 
take each of these hypercubes in turn, either in sequence or at random, and 
calculate the appropriate 48 x 48 block of inverse required to update its links. This 
could be done by the conjugate gradient algorithm, but we shall see how block 
Lanczos can be used more efficiently with a substantial saving in computing time. 
We then take each of the 32 links in turn in any order, extract the appropriate 
6 x 6 block from the 48 x 48 block and apply Metropolis updating to the link a 
large number of times, which requires the calculation of only 6 x 6 determinants 
and matrix multiplications each time. Before proceeding to the next link in the 
hypercube, we update the 48 x 48 block by rank annihilation for the overall change 
to the link. It proves worthwhile to go round the whole hypercube a few times until 
it is close to equilibrium within itself before proceeding to a new hypercube. This 
brings the configuration into equilibrium 22-3 times faster. 

3. THE LANCZOS ALGORITHM 

The Lanczos algorithm has already been used to calculate eigenvalues of the fer- 
mion matrix [8] and invert it row by row [9], and this has been applied to chiral 
condensate [8, lo] and propagator calculations [9] as well as the investigation of 
the topological structure of SU(2) gauge theory [ll]. We shall briefly review this 
before describing the block Lanczos algorithm. 

The hermitian Lanczos algorithm aims to tridiagonalize a hermitian matrix H by 
a unitary transformation X: 
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HX = XT, . (9) 
. . . . . . . . . . . . 

Let us denote the columns of X by xi, i.e., X= (xi, x2,..., xN). These are called the 
Lanczos vectors. Then 

and 

xfxj= 6, (10) 

Hx,=B~~~X~~,+C~,X;+B~X~+~, i > 2. 
(11) 

Given an initial unit Lanczos vector x, , we can proceed iteratively to calculate xi: 

aI=x:Hx,, 

PI = IHx, -alxl I, 

1 
xz=B; (Hx, --cIIxI), 

a,=x:Hx,, 

etc. 

(12) 

In theory this guarantees the orthonormality of the Lanczos vectors, and the 
algorithm should end with /IN = 0 after N (= 3Lj. ~5,) iterations. However, this fails 
since rounding errors lead to loss of orthogonality between Lanczos vectors 
separated by a large number of iterations. Fortunately all is not lost, since the 
eigenvalues of T are found remarkably to converge to those of H together with 
ghosts and spurious eigenvalues, which can be removed by various means [6]. In 
this way it is possible to calculate all eigenvalues for a large, sparse matrix with 
great efficiency and accuracy, and this was the initial motivation for the Lanczos 
algorithm. 

When the Lanczos algorithm is applied to the fermion matrix for 
Kogut-Susskind fermions, there is a useful simplification due to the even-odd block 
structure of M. An even site of the lattice is one whose component indices add up to 
an even number. The matrix M connects even sites to odd sites only and vice versa. 
In matrix notation this means that H has the following block structure: 

H=($ 2). (13) 
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If we put m = 0 and apply the Lanczos algorithm to H taking the first Lanczos 
vectors to be zero on all odd sites. 

Xl 
x, = (I 0 ’ 

then we find that all cli = 0 and each odd Lanczos vector takes the form 

x2i+ 1 
X 2r+1= (’ > 0 ’ 

and for the rest 

0 
x2j= I ( ) . x2i 

(14) 

(16) 

The Lanczos equations then reduce to 

Al+.& =p,4, 

Qi2i=B2i-li2i- I +B2i+li2i+17 i> 1, (17) 

a+~2i+l=B2i~2i+B2i+l~2i+13 i> 1, 

with the even vectors being mutually orthonormal and similarly for the odd. The 
immediate advantage of this is that we have halved the amount of computation, 
since there is no need to compute cl;, and each Lanczos vector is half-zero. There 
are also savings in space, and, in fact, we need only store two of these half vectors 
between iterations. 

4. INVERSION BY THE LANCZOS ALGORITHM 

Let us consider now how we may use the Lanczos algorithm to invert the 
fermion matrix. We have 

Hx, =B,x,, 

Hxi=Bi~1xi_,+2imXi+BiXi+*, i > 2. 
(18) 

The betas and Lanczos vectors are independent of the mass m. That is why we can 
simultaneously invert the matrix at a number of different masses without increased 
computation. 

We shall use these Lanczos equations iteratively to calculate HP ‘x1 as a series 

H--‘x,=c,x,+c,x,+.... (19) 
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The details of this were given in Ref. [6], and we do not repeat it here, since it is 
complicated algebraically. However, as an illustration we can do the much simpler 
case m =O. We need only every alternate Lanczos equation starting with the 
second: 

We use the other Lanczos equations in sequence to eliminate the remainder term. 
This gives 

1 Bz BzB4 H~‘x,=~x~-~x~+~x~-.... 

At first sight it seems highly unlikely that this will converge, since the betas 
typically fluctuate randomly about some constant value. However, if we are brave 
enough to persist, we find that although the series proceeds for many iterations 
without any sign of convergence, we eventually reach a point where there is a rapid 
convergence of the series down to about machine precision. This point can be 
identified with the point where the smallest eigenvalues of the tridiagonal form are 
converging to the true eigenvalues of H. It is remarkable that such good con- 
vergence is possible for such a highly singular matrix, and there is certainly no 
similar convergence for the conjugate gradient algorithm at zero mass. 

At larger masses the convergence of the Lanczos algorithm is more or less 
identical to that of the conjugate gradient algorithm, and a similar amount of 
calculation is required. As the mass becomes smaller, the convergence rate decreases 
in both cases, so that the number of iterations required is inversely proportional to 
m. When the mass becomes very (i.e., realistically) small, so many iterations are 
required that we reach the point of rapid convergence for the Lanczos algorithm, 
while the conjugate gradient algorithm continues to require more and more 
iterations. 

5. BLOCK LANCZOS 

The Lanczos algorithm can be generalised so that the alphas and betas become 
small L. x L matrices. The alphas are hermitian and the betas can be chosen to be 
triangular [ 121, so that H is transformed into a band matrix of width 2L + 1. The 
Lanczos vectors are Nx L arrays 

Hx, =xIal +x,P,, 

Hx,=x~-,B~-~+x,~;+x~+,P~, ia 2. 
(22) 

The algorithm proceeds in a way analogous to the L = 1 case. For the fermion 
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matrix we can again have cli = 0 if the initial Lanczos vector is chosen to be zero on 
odd sites. The algorithm is then 

which we solve for PI as a lower triangular matrix to compute 

x2= Hx,~;’ (24) 

and so on, 

(25) 

where 

U=HXi-XipIP~pI~ i> 2. (26) 

We can now apply block Lanczos to inversions to calculate L rows of the inverse 
at one time. The reason block Lanczos is more efftcient lies in the fact that one is 
not transforming to a tridiagonal form but rather only to a block tridiagonal form, 
which is less constraining. The optimum block size is a function of the machine 
architecture, since the algorithm involves the inversion of a non-hermitian matrix. 

We shall not describe in detail the derivation of the complete algorithm, since it 
is merely a case of generalising the L = 1 case [6], replacing all variables by L x L 
matrices. The resulting recurrence relations are 

A,=l, 

B, =O, 

Y, =o, 

t, = 1, 

v, = 0, 

u, = -x,j,‘, 

t2k = -p2kA2kp ,A,‘&i’-, t2kp 1, 

UZk = U2k ~I + im x2k&ip, &k ~,, 

V2k= V2k--1+X2k&i~It2k~1+im ~2kA~‘&~1t2k-1~ 

(27) 
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A 2k+l =b2k+,&i1)+A2k, 

B 2k+1=B2k-(&i1)+A2k, 

Y2kf 1 =y2k, 

t 2k+l = t2k, 

u 2k+ I = U2k+X2k+I(&i’)+ A2k, 

V - V2k, 2k+l- 

(1-(~;‘)m2.hk+,)-’ V2k+1*H-‘X1~ 

The coefficients A, B, y and t are all L x L matrices, and U and V are N x L arrays. 
However, if only a small part of the inverse is required, as is the case for fermion 
updating, it is not necessary to compute the whole of U and V but only some K x L 
block of them. 

If we are updating hypercube by hypercube, this algorithm can be applied to 
calculate the 48 x 48 block of H- ’ required as follows. We take L = 24 and 
calculate the block in two 48 x 24 pieces in two separable inversions, one to cover 
the odd sites and another for the even sites of the hypercube. 

6. OUTLOOK 

The block Lanczos method has been successfully applied to fermion updating on 
small lattices ( 5 84) for gauge group SU(2) [ 133, and we were able to obtain a 
time saving of a factor of 10 over single row inversion for a block of one hypercube. 
We believe, however, that this is not optimal yet, but that it may be more efficient 
to take blocks of two or three hypercubes at a time. 

In any case, it appears that the block Lanczos method is capable of simulating 
the vacuum of gauge theories including the effect of fermion loops on medium-sized 
lattices with today’s vector processors. We hope to be able to report on the out- 
come of such a calculation in the near future. 
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